Backgrinding and die sawing are two steps in the Integrated Circuit (IC) packaging process. For easier transportation and protection of the wafer, the thickness of the industrially produced wafer is larger than required. Therefore, before the IC is packaged, it is ground to a thin disc in the “backgrinding process”. Die sawing is another process which is used to cut large silica wafers into smaller discs (see diagram below). After either of these processes, the wafer chips must be rinsed with Ultrapure Water (UPW) to remove fine silica particles and any other contaminants. Backgrinding wastewater and die sawing wastewater are typically discharged from the IC packaging plant. This discharged water normally contains only UPW and fine silica particles, but on occasion some grinding fluid is also present. Removal of the fine particles from the wastewater is critical to allow recycle and reuse of this large volume of water.

This document will review a working reclaim system for backgrinding and die sawing wastewater using POREX® Tubular Membrane Filter (TMF)™ system. Facilities using this process find it to be an excellent option for this application.
In this facility, there are two streams of wastewater being treated by Porex TMF:

- Wastewater from the site's workshop (backgrinding and die sawing) totaling 100 m³/day.

- Backwash wastewater from the site's existing hollow fiber ultrafiltration (UF) membrane system. The hollow fiber UF system was commissioned in 2010, also for backgrinding and die saw wastewater treatment. The UF permeate water is sent back to the facility's UPW treatment system. During service, the hollow fiber UF system is backwashed every 30 minutes. About 60~70 m³/day of wastewater are discharged to the Porex TMF system.

The total Porex TMF system is designed to handle 200 m³/day, or approximately 12 m³/hr. The mixed raw wastewater is brown in appearance with numerous very fine particles in the liquid. These particles are very hard to precipitate naturally; a container of the water sample was set out for gravity settling for over one month and no solid/liquid interface could be found.

When used to treat backgrinding and die sawing wastewater the advantages of Porex TMF process are:

1. Combined with a filter press, this system will divide the wastewater into two parts: filtered water and dewatered sludge cake. There is no concentrated or reject water drain resulting in a nearly 100% recovery rate.

2. No chemical dosing into the wastewater is necessary. Therefore, if desired, sludge can be reclaimed for future reuse.

3. No pretreatment stage; the entire system uses simple physical solid/liquid separation.

4. The proprietary POREX® Tubular Membrane Filter (TMF)™ has very high abrasion resistance.

5. The membrane layer is not destroyed by acute silicon particles. Normally this is the biggest challenge when hollow fiber UF membrane technology is utilized for this kind of water. Hollow fiber plugging or breakage can occur due to the small particles size, high concentration and very abrasive nature of the particles.

6. Maintenance of the system is simple. The system can be designed for automatic operation, and can be placed into service mode from standby mode without any upsets or problems.
7. The Porex TMF membrane has good resistance to fouling compared with hollow fiber membranes and flux is more easily recovered after chemical cleaning.

8. The system design allows for a skid frame requiring less space than other methods.

9. Expansion capability; water capacity can be enlarged by simply adding more skids or modules.

The details below describe the installed Porex TMF system.

- Water capacity: 200 m³/day, divided into 2 trains.
- Module Specification: Porex TMF system (module model # MME3005613VP)
- Tubes per Module: 13
- Module Housing: PVC housing
- Membrane tube diameter: 1 inch
- Membrane: 0.05 micron
- Active membrane surface area: 1.82 m² per module.
- Module quantity: 12 modules per train, 2 trains per unit, totaling 24 modules in this system.

TMF Characteristics and Advantages Continued

- Equalization Tank
- Recirculation Tank
- TMF Skid
- Filter Press
- Sludge Cake
- RO Tank of UPW System

Porex TMF System Information

- Water capacity: 200 m³/day, divided into 2 trains.
- Module Specification: Porex TMF system (module model # MME3005613VP)
- Tubes per Module: 13
- Module Housing: PVC housing
- Membrane tube diameter: 1 inch
- Membrane: 0.05 micron
- Active membrane surface area: 1.82 m² per module.
- Module quantity: 12 modules per train, 2 trains per unit, totaling 24 modules in this system.
The backgrinding and die sawing wastewater, and the UF backwash wastewater are collected and equalized in a raw wastewater tank (Equalization Tank). This wastewater is then transferred into the Recirculation Tank (also called the concentration tank). The water is then fed into the TMF system for solid/liquid separation. The Porex TMF filtered water goes to a separate product water tank and then back to the UPW system for reuse. Silicon suspended solids are concentrated during recirculation and some of this concentrate is sent to a filter press for dewatering at specified intervals. The sludge cake is transferred out of the factory, while squeezed water is sent back to the Equalization Tank.

No chemicals are fed into the system during normal operation.

Process Description

The system was implemented in November 2011 and system performance has met or exceeded the design specification. The initial filtrate water flow rate is higher than 16 m³/hr. Filtrate water turbidity is less than 1 NTU and filtrated water conductivity is less than 20 μs/cm.

(The TMF system has no effect on product water conductivity. The low conductivity is due to the low TDS load in the influent water)

(Product water turbidity as shown in the above photo)

Operation Status

The system was implemented in November 2011 and system performance has met or exceeded the design specification. The initial filtrate water flow rate is higher than 16 m³/hr. Filtrate water turbidity is less than 1 NTU and filtrated water conductivity is less than 20 μs/cm.

(The TMF system has no effect on product water conductivity. The low conductivity is due to the low TDS load in the influent water)

(Product water turbidity as shown in the above photo)

Summary

The Porex TMF system is widely used for backgrinding and die sawing wastewater. The excellent filtrate quality, high recovery rate, lack of needed chemical dosing, and ease of operation make the system superior to other processes and technologies in this application.

For more information, contact Porex Filtration at www.porexfiltration.com.
About Microfiltration

Microfiltration is a cross flow, pressure-driven membrane separation technology designed to remove submicron (and larger) suspended solids from water supplies. It differs from conventional (“dead-end”) filtration in that in a conventional process the entire water supply passes through the filter medium, whereas in the crossflow process, a portion passes through the membrane, becoming “permeate,” while the remainder exits the system as “concentrate,” carrying away almost all of the suspended solids.

The following illustration compares these two processes.

The microfiltration membranes used in this application are POREX® TMF, depicted below.

The feed flow is down the center of the tube (lumen feed) with the permeate passing through the tubular wall and collected from the area around the outside of the tubes inside the module housing.
The tubes in this application are 1” I.D., with a polyethylene substrate supporting a PVDF (polyvinylidene fluoride) membrane layer with 0.05µm pores. The membrane module is illustrated below.

Each membrane module consists of thirteen 72” long tubes enclosed inside a PVC housing. Specifications on the modules and tubes are as follows:

<table>
<thead>
<tr>
<th>Modules</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing Diameter</td>
<td>6”</td>
</tr>
<tr>
<td>Permeate Port (Qty 2)</td>
<td>2.875 x 1.89” L pipe stub</td>
</tr>
<tr>
<td>Concentrate Ports</td>
<td>6” pipe Anvile Gruvlok groove</td>
</tr>
<tr>
<td>Mounting Required</td>
<td>Horizontal; 2 point</td>
</tr>
<tr>
<td>Module Length</td>
<td>72”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tubes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Tubes</td>
<td>13</td>
</tr>
<tr>
<td>Nominal ID</td>
<td>1”</td>
</tr>
<tr>
<td>Nominal OD</td>
<td>1.34”</td>
</tr>
<tr>
<td>Total Active Surface Area</td>
<td>19.8 ft² (1.82m²)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Internal Liquid Volume</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtrate Volume</td>
<td>3.06 gallons (11.58 ltr)</td>
</tr>
<tr>
<td>Concentrate Volume</td>
<td>3.18 gallons (12.04 ltr)</td>
</tr>
<tr>
<td>Total Volume</td>
<td>6.25 gallons (23.66 ltr)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Materials of Construction</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Potting</td>
<td>Solvent Cement</td>
</tr>
<tr>
<td>Internal Supports</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>Gasket Material</td>
<td>None</td>
</tr>
<tr>
<td>Preservative (Shipping)</td>
<td>Propylene Glycol</td>
</tr>
<tr>
<td>Membrane</td>
<td>PVDF</td>
</tr>
</tbody>
</table>

A total of 24 modules are in this TMF system.

Porex TMF Modules are available in multiple configurations ranging from 1 to 61 tube modules with 1 inch or ½ inch diameter membrane tubes.